강력한 망원경으로 중성자별에서 불어오는 뜨겁고 차가운 바람이 동반자를 찢어내는 것을 볼 수 있습니다.

따뜻한 바람과 찬 바람을 내뿜는 중성자별의 이미지. 크레딧: Gabriel Perez(IAC)

지구와 우주에서 가장 강력한 망원경을 사용하여 천문학자 팀은 처음으로 에서 뜨겁고 따뜻한 바람과 찬 바람의 폭발을 감지했습니다.[{” attribute=””>neutron star whilst it consumes matter from a nearby star. The discovery provides new insight into the behaviors of some of the most extreme objects in the universe.

Low-mass X-ray binaries (LMXBs) are systems containing a neutron star or black hole. They are fuelled by material ripped from a neighboring star, a process known as accretion. Most accretion occurs during violent eruptions where the systems brighten dramatically. At the same time, some of the material that spirals in is propelled back into space in the form of disc winds and jets.

The most common signs of outflowing material from astronomical objects are associated with “warm” gas. Despite this, only winds of “hot” or “cold” gas have been observed in transient X-ray binaries, until now.

In this new study, a team of researchers from eleven countries, led by the University of Southampton, studied the recent eruption of the X-ray binary known as Swift J1858. They used a combination of telescopes, including NASA’s Hubble Space Telescope (HST), the European Space Agency’s XMM-Newton satellite, the European Southern Observatory Organisation’s Very Large Telescope (VLT) and the Spanish Gran Telescopio Canarias (GTC).

The results, published in the journal Nature, showed persistent signatures of a warm wind at ultraviolet wavelengths occurring at the same time as signatures of a cold wind at optical wavelengths. This is the first time that winds from such a system have been seen across different bands of the electromagnetic spectrum.

Lead author Dr. Noel Castro Segura, of the University of Southampton said: “Eruptions like this are rare, and each of them is unique. Normally they are heavily obscured by interstellar dust, which makes observing them really difficult. Swift J1858 was special, because even though it is located on the other side of our galaxy, the obscuration was small enough to allow for a full multiwavelength study.”

“Only one other system — the black hole X-ray binary, V404 Cyg — has shown similar properties. However, our attempt to perform the same experiment on that system was unsuccessful, because the eruption ended before we could get the ground-based and space-based telescopes to observe it simultaneously,” co-Author Dr Hernández Santisteban from University of St Andrews said.

Swift J1858 is a newly discovered X-ray transient event that displays extreme variability across the electromagnetic spectrum, which presented a rare opportunity.

“All the astronomers in the field were incredibly excited, to the point that we combined our efforts to cover the full spectrum, from radio to X-ray using state-of-art observatories on Earth and in space,” Dr. Castro Segura continued.

Co-author Nathalie Degenaar, from the University of Amsterdam added, “Neutron stars have an immensely strong gravitational pull that allows them to gobble up gas from other stars. The stellar cannibals are, however, messy eaters and much of the gas that neutron stars pull towards them is not consumed, but flung into space at high speed. This behavior has a large impact both on the neutron star itself, and on its immediate surroundings. In this paper we report on a new discovery that provides key information about the messy eating patterns of these cosmic cookie monsters.”

READ  NASA, SpaceX 임무: 국제 우주 정거장에서 우주비행사 귀환

“This time we had cosmic luck on our side, as we were able to co-ordinate ten telescopes and point them towards the J1858, all while it was fully active. This allows us to obtain much more information, since we can use different techniques at different wavelengths,” Dr. Hernández Santisteban said.

Dr. Degenaar added, “designing such an ambitious observing campaign – built around the best telescopes on Earth and in space – was a huge challenge. So, it is incredibly exciting that all this work has paid off and allowed us to make a key discovery that would not have been possible otherwise.”

As well as discovering the different types of winds, the team were able to study the temporal evolution of the gas that flows out. They found that the warm wind was not affected by the strong variations in the brightness of the system. The absence of such a response had previously been an unconfirmed theoretical prediction based on sophisticated simulations.

“In this research we combined the unique capabilities of the HST with the best ground-based telescopes, such as the VLT and GTC, to obtain a complete picture of the dynamics of the gas in the system, from the near-infrared to ultraviolet wavelengths. This allowed us to unveil for first time the true nature of these powerful outflows,” Dr. Castro Segura said.

“The new insights provided by our results are key to understanding how these objects interact with their environment. By shedding energy and matter into the galaxy, they contribute to the formation of new generations of stars, and to the evolution of the galaxy itself,” Dr. Castro Segura concluded.

The study was funded by grants from agencies including the Science and Technology Facilities Council (STFC) and NASA among others.

Using the most powerful telescopes on Earth and in space, a team of astronomers has found for the first-time blasts of hot, warm, and cold winds from a neutron star whilst it consumes matter from a nearby star. The discovery provides new insight into the behaviors of some of the most extreme objects in the universe.

Low-mass X-ray binaries (LMXBs) are systems containing a neutron star or black hole. They are fuelled by material ripped from a neighboring star, a process known as accretion. Most accretion occurs during violent eruptions where the systems brighten dramatically. At the same time, some of the material that spirals in is propelled back into space in the form of disc winds and jets.

READ  SpaceX와 NASA, '추가 분석'을 위해 우주비행사 발사 지연

The most common signs of outflowing material from astronomical objects are associated with “warm” gas. Despite this, only winds of “hot” or “cold” gas have been observed in transient X-ray binaries, until now.

In this new study, a team of researchers from eleven countries, led by the University of Southampton, studied the recent eruption of the X-ray binary known as Swift J1858. They used a combination of telescopes, including NASA’s Hubble Space Telescope (HST), the European Space Agency’s XMM-Newton satellite, the European Southern Observatory Organisation’s Very Large Telescope (VLT) and the Spanish Gran Telescopio Canarias (GTC).

The results, published in the journal Nature, showed persistent signatures of a warm wind at ultraviolet wavelengths occurring at the same time as signatures of a cold wind at optical wavelengths. This is the first time that winds from such a system have been seen across different bands of the electromagnetic spectrum.

Lead author Dr. Noel Castro Segura, of the University of Southampton said: “Eruptions like this are rare, and each of them is unique. Normally they are heavily obscured by interstellar dust, which makes observing them really difficult. Swift J1858 was special, because even though it is located on the other side of our galaxy, the obscuration was small enough to allow for a full multiwavelength study.”

“Only one other system — the black hole X-ray binary, V404 Cyg — has shown similar properties. However, our attempt to perform the same experiment on that system was unsuccessful, because the eruption ended before we could get the ground-based and space-based telescopes to observe it simultaneously,” co-Author Dr Hernández Santisteban from University of St Andrews said.

Swift J1858 is a newly discovered X-ray transient event that displays extreme variability across the electromagnetic spectrum, which presented a rare opportunity.

“All the astronomers in the field were incredibly excited, to the point that we combined our efforts to cover the full spectrum, from radio to X-ray using state-of-art observatories on Earth and in space,” Dr. Castro Segura continued.

Co-author Nathalie Degenaar, from the University of Amsterdam added, “Neutron stars have an immensely strong gravitational pull that allows them to gobble up gas from other stars. The stellar cannibals are, however, messy eaters and much of the gas that neutron stars pull towards them is not consumed, but flung into space at high speed. This behavior has a large impact both on the neutron star itself, and on its immediate surroundings. In this paper we report on a new discovery that provides key information about the messy eating patterns of these cosmic cookie monsters.”

“This time we had cosmic luck on our side, as we were able to co-ordinate ten telescopes and point them towards the J1858, all while it was fully active. This allows us to obtain much more information, since we can use different techniques at different wavelengths,” Dr. Hernández Santisteban said.

READ  NASA가 고정 장치에 갇힌 OSIRIS-Rex 소행성의 마지막 샘플을 공개했습니다.

Dr. Degenaar added, “designing such an ambitious observing campaign – built around the best telescopes on Earth and in space – was a huge challenge. So, it is incredibly exciting that all this work has paid off and allowed us to make a key discovery that would not have been possible otherwise.”

As well as discovering the different types of winds, the team were able to study the temporal evolution of the gas that flows out. They found that the warm wind was not affected by the strong variations in the brightness of the system. The absence of such a response had previously been an unconfirmed theoretical prediction based on sophisticated simulations.

“In this research we combined the unique capabilities of the HST with the best ground-based telescopes, such as the VLT and GTC, to obtain a complete picture of the dynamics of the gas in the system, from the near-infrared to ultraviolet wavelengths. This allowed us to unveil for first time the true nature of these powerful outflows,” Dr. Castro Segura said.

“Our understanding of what causes these winds, and how fundamental they are to how these systems evolve over time, is crude at best,” said co-author Dr Knox S. Long, emeritus astronomer at the Space Telescope Science Institute. “I am excited because our discoveries give us a new window into these phenomena and might ultimately help us to build a more concrete understanding of what physical conditions are required to power winds in a wider range of astrophysical objects” he continued.

“The new insights provided by our results are key to understanding how these objects interact with their environment. By shedding energy and matter into the galaxy, they contribute to the formation of new generations of stars, and to the evolution of the galaxy itself,” Dr. Castro Segura concluded.

Reference: “A persistent ultraviolet outflow from an accreting neutron star binary transient” by N. Castro Segura, C. Knigge, K. S. Long, D. Altamirano, M. Armas Padilla, C. Bailyn, D. A. H. Buckley, D. J. K. Buisson, J. Casares, P. Charles, J. A. Combi, V. A. Cúneo, N. D. Degenaar, S. del Palacio, M. Díaz Trigo, R. Fender, P. Gandhi, M. Georganti, C. Gutiérrez, J. V. Hernandez Santisteban, F. Jiménez-Ibarra, J. Matthews, M. Méndez, M. Middleton, T. Muñoz-Darias, M. Özbey Arabacı, M. Pahari, L. Rhodes, T. D. Russell, S. Scaringi, J. van den Eijnden, G. Vasilopoulos, F. M. Vincentelli and P. Wiseman, 2 March 2022, Nature.
DOI: 10.1038/s41586-021-04324-2

The study was funded by grants from agencies including the Science and Technology Facilities Council (STFC) and NASA among others.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

SpaceX는 업그레이드 된 Starship 프로토 타입에 Starlink 접시를 설치하고 있습니다.

최근의 긴 플립에서 SpaceX는 연방 통신위원회 (FCC)에 Starship 15 (SN15) 일련 번호에…

새로운 카메라는 동물이 볼 수 있는 것과 동일한 색상을 사용하여 이미지를 캡처합니다. • Earth.com

새로운 카메라 시스템 기술은 생태학자와 영화 제작자가 자연 환경에서 다양한 동물의 색상…

James Webb 망원경은 지금까지 가장 오래되고 가장 먼 은하 중 두 개를 찾습니다. 제임스 웹 우주 망원경

NASA 제임스 웹 우주 망원경 그것은 빅뱅 이후 불과 3억 5천만 년…

마이크로파 크기의 우주선이 지구와 달 사이의 새로운 궤도를 테스트합니다

A라는 이름의 작은 위성 큐브샛, 전자 레인지 크기와 무게가 55파운드(25kg)에 불과하지만 달…