은하수의 중심

은하의 중심은 약 30,000 광년 거리에 있습니다. 이미지 중앙에는 Sgr A* 초대질량 블랙홀(보이지 않음)이 있습니다. Sgr A*의 위치는 별들의 움직임에서 추론할 수 있습니다. 먼지 구름과 X3a 주변의 크기 때문에 이 이미지에는 어린 별도 보이지 않습니다. 크레딧: 플로리안 베커

쾰른 대학교 천체물리학 연구소의 플로리안 비스커 박사가 이끄는 국제 연구팀이 초은하단 근처에서 새로 형성된 별을 발견했습니다.[{” attribute=””>black hole, Sagittarius A*, located at the center of the Milky Way.

The newly discovered star, referred to as baby star X3a, is incredibly young, with an age estimated to be only several tens of thousands of years old, making it younger than the human species. The remarkable aspect of this star is its proximity to the supermassive black hole at the center of the Milky Way, as it should not theoretically be able to exist so close to the black hole.

However, the team believes that it formed in a dust cloud orbiting the giant black hole and sank to its current orbit only after it had formed. The study was recently published in The Astrophysical Journal.

The vicinity of the black hole at the center of our Galaxy is generally considered to be a region characterized by highly dynamic processes and hard X-ray and UV radiation.

Precisely these conditions act against the formation of stars like our Sun. Therefore, for a long time, scientists had assumed that over periods of billions of years, only old, evolved stars can settle by dynamical friction in the vicinity of the supermassive black hole.

However, quite surprisingly, already twenty years ago very young stars were found in the immediate vicinity of Sgr A*. It is still not clear how these stars got there or where they formed. The occurrence of very young stars very close to the supermassive black hole has been referred to as “the paradox of youth.”

The baby star X3a – which is ten times as big and fifteen times as heavy as our Sun – could now close the gap between star formation and the young stars in the immediate vicinity of Sgr A*. X3a needs special conditions to form in the immediate vicinity of the black hole.

First author Dr. Florian Peißker explained: “It turns out that there is a region at a distance of a few light years from the black hole which fulfills the conditions for star formation. This region, a ring of gas and dust, is sufficiently cold and shielded against destructive radiation.”

Low temperatures and high densities create an environment in which clouds of hundreds of solar masses can form. These clouds can in principle move very fast toward the direction of the black hole due to cloud–cloud collisions and scattering that remove the angular momentum.

In addition, very hot clumps formed in close proximity to the baby star which could then be accreted by X3a. These clumps could thus also contribute to X3a reaching such a high mass in the first place. However, these clumps are only a part of the formation history of X3a. They still do not explain its “birth.”

The scientists assume the following scenario to be possible: shielded from the gravitational influence of Sgr A* and intense radiation, a dense enough cloud could have formed in the outer gas and dust ring around the center of the Galaxy. This cloud had a mass of about one hundred suns and collapsed under its own gravity to one or more protostars.

“This so-called fall time approximately corresponds to the age of X3a,” Peißker added. Observations have shown that there are many of these clouds that can interact with each other. It is therefore likely that a cloud falls toward the black hole from time to time.

This scenario would also fit X3a’s stellar development phase, which is currently evolving into a mature star. It is therefore quite plausible that the gas and dust ring acts as the birthplace of the young stars in the center of our Galaxy.

Dr. Michal Zajaček at Masaryk University in Brno (Czech Republic), a co-author of the study, clarified: “With its high mass of about ten times the Solar mass, X3a is a giant among stars, and these giants evolve very quickly towards maturity. We have been lucky to spot the massive star in the midst of the comet-shaped circumstellar envelope. Subsequently, we identified key features associated with a young age, such as the compact circumstellar envelope rotating around it.”

Since similar dust and gas rings can be found in other galaxies, the described mechanism could apply there as well. Many galaxies can therefore host very young stars in their very centers. Planned observations with NASA’s James Webb Space Telescope or the European Southern Observatory’s Extremely Large Telescope in Chile will test this star formation model for our Galaxy as well as others.

Reference: “X3: A High-mass Young Stellar Object Close to the Supermassive Black Hole Sgr A*” by Florian Peißker, Michal Zajaček, Nadeen B. Sabha, Masato Tsuboi, Jihane Moultaka, Lucas Labadie, Andreas Eckart, Vladimír Karas, Lukas Steiniger, Matthias Subroweit, Anjana Suresh, Maria Melamed and Yann Clénet, 28 February 2023, The Astrophysical Journal.
DOI: 10.3847/1538-4357/aca977

READ  보건 당국은 아 이오니아의 교정 시설에서 90 건의 COVID-19 사례가 확인되었다고 말했습니다.
답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

“대멸종” 시대에 살았던 고대 검치호 생물

CNN – 편집자 주: CNN의 Wonder Theory 과학 뉴스레터에 가입하세요. 놀라운 발견,…

‘놀라운’발견, 우주 플라즈마 허리케인 입증 | 과학 및 기술 뉴스

과학자들은 북극을 가로 질러 600 마일의 질량을 가진 우주 허리케인의 존재를 확인했다고…

2021년, 올해의 베스트가 될 것 같은 바르샤위 운석이 이제 절정을 맞이하고 있습니다!

놀라운 페르세우스 유성우 올해의 가장 화려한 ‘Shehab’ 쇼가 될 수 있는 쇼에서…

SpaceX, 16편에서 두 번째 Falcon 9 부스터 출시 – Spaceflight Now

이번 주에 두 번째로 SpaceX는 Falcon 9 로켓을 16번째로 발사하여 한계를 뛰어…