해왕성 대기의 온도 측정값인 해왕성의 열적외선 밝기의 변화를 관찰했습니다. 플롯은 지상 망원경으로 촬영한 기존의 모든 이미지에 대해 시간 경과에 따른 해왕성 성층권의 열적외선 밝기의 상대적 변화를 보여줍니다. 밝은 이미지는 따뜻한 것으로 해석됩니다. 약 12μm의 파장에서 해당 적외선 열화상(상단)은 2006년, 2009년, 2018년(유럽 남방 천문대의 초대형 VISIR 기기로 관찰) 및 2020년(스바루의 COMICS 기기로 관찰)에 해왕성의 모습을 보여줍니다. 남극 대륙은 지난 몇 년 동안 상당히 따뜻해진 것으로 보입니다. 출처: Michael Roman/NASA/JPL/Voyager-ISS/Justin Cowart

해왕성은 우리가 생각했던 것보다 차갑다

레스터 대학의 천문학자들이 주도한 새로운 연구는 온도가 얼마나 높은지를 밝혀냈습니다.[{” attribute=””>Neptune’s atmosphere have unexpectedly fluctuated over the past two decades.

The study, published today (Monday, April 11, 2022) in Planetary Science Journal, used observations in thermal-infrared wavelengths beyond the visible light spectrum, effectively sensing heat emitted from the planet’s atmosphere.

An international team of researchers, including scientists from Leicester and NASA’s Jet Propulsion Laboratory (JPL), combined all existing thermal infrared images of Neptune gathered from multiple observatories over almost two decades. These include the European Southern Observatory’s Very Large Telescope and Gemini South telescope in Chile, together with the Subaru Telescope, Keck Telescope, and the Gemini North telescope, all in Hawai’i, and spectra from NASA’s Spitzer Space Telescope.

Neptune Temperature

Neptune as seen in visible light (centre) and thermal-infrared wavelengths (right), in 2020. The centre image combines multiple images from the Hubble Space Telescope, while the thermal-infrared image on the right was taken from the Subaru Telescope on Maunakea, Hawai’i. In the thermal-infrared, Neptune’s warm south pole glows more brightly than ever seen before. Credit: Michael Roman/NASA/ESA/STSci/M.H. Wong/L.A. Sromovsky/P.M. Fry

By analyzing the data, the researchers were able to reveal a more complete picture of trends in Neptune’s temperatures than ever before.

READ  NASA는 2023년에 펌핑했습니다. 이유는 다음과 같습니다.

But to the researchers’ surprise, these collective datasets show a decline in Neptune’s thermal brightness since reliable thermal imaging began in 2003, indicating that globally-averaged temperatures in Neptune’s stratosphere – the layer of the atmosphere just above its active weather layer – have dropped by roughly 8 degrees Celsius (14 degrees Fahrenheit) between 2003 and 2018.

Dr. Michael Roman, Postdoctoral Research Associate at the University of Leicester and lead author on the paper, said:

“This change was unexpected. Since we have been observing Neptune during its early southern summer, we would expect temperatures to be slowly growing warmer, not colder.”

Neptune has an axial tilt, and so it experiences seasons, just like Earth. However, given its great distance from the Sun, Neptune takes over 165 years to complete an orbit around its host star, and so its seasons change slowly, lasting over 40 Earth-years each.

Dr. Glenn Orton, Senior Research Scientist at JPL and co-author on the study, noted:

“Our data cover less than half of a Neptune season, so no one was expecting to see large and rapid changes.”

Voyager 2 View of Neptune

Voyager 2 view of Neptune, captured in August 1989. Credit: NASA/JPL-Caltech/Kevin M. Gill

Yet, at Neptune’s south pole, the data reveal a different and surprisingly dramatic change. A combination of observations from Gemini North in 2019 and Subaru in 2020 reveal that Neptune’s polar stratosphere warmed by roughly 11°C (~20°F) between 2018 and 2020, reversing the previous globally-averaged cooling trend. Such polar warming has never been observed on Neptune before.

The cause of these unexpected stratospheric temperature changes is currently unknown, and the results challenge scientists’ understanding of Neptune’s atmospheric variability.

READ  프로빈스타운의 코비드-19 발병은 CDC 마스크 지침의 변경에 박차를 가했습니다. 다음은 주민들이 배운 것과 그들이 어떻게 대응하고 있는지입니다.

Dr. Roman continued:

“Temperature variations may be related to seasonal changes in Neptune’s atmospheric chemistry, which can alter how effectively the atmosphere cools.

“But random variability in weather patterns or even a response to the 11-year solar activity cycle may also have an effect.”

The 11-year solar cycle (marked by periodic variation in the Sun’s activity and sunspots) has been previously suggested to affect Neptune’s visible brightness, and the new study reveals a possible, but tentative, correlation between the solar activity, stratospheric temperatures, and the number of bright clouds seen on Neptune.

Follow-up observations of the temperature and cloud patterns are needed to further assess any possible connection in the years ahead.

Answers to these mysteries and more will come from the James Webb Space Telescope (JWST), which is set to observe both ice giants, Uranus and Neptune, later this year.

Leigh Fletcher, Professor of Planetary Science at the University of Leicester, will lead such observations with allocated time of JWST’s suite of instruments. Professor Fletcher, also a co-author on this study, said:

“The exquisite sensitivity of the space telescope’s mid-infrared instrument, MIRI, will provide unprecedented new maps of the chemistry and temperatures in Neptune’s atmosphere, helping to better identify the nature of these recent changes.”

Reference: “Sub-Seasonal Variation in Neptune’s Mid-Infrared Emission” 11 April 2022, Planetary Science Journal.
DOI: 10.3847/PSJ/ac5aa4

This study was funded by a European Research Council grant to the University of Leicester, known as GIANTCLIMES. This project has previously discovered long-term changes in atmospheric temperatures and clouds on the gas giants, Jupiter and Saturn, and it provided the first maps of the stratospheric temperatures of Uranus. GIANTCLIMES has paved the way for new discoveries on all four giant planets from JWST in the years to come.

READ  천문학자들은 하늘에서 보름달의 16배에 달하는 블랙홀 폭발을 포착합니다.

Additional co-authors on this work include Thomas Greathouse (Southwest Research Institute), Julianne Moses (Space Science Institute), Naomi Rowe-Gurney (Howard University / NASA Goddard Space Flight Center), Patrick Irwin (Oxford), Arrate Antuñano (UPV/EHU), James Sinclair (JPL), Yasumasa Kasaba (Tohoku University), Takuya Fujiyoshi (Subaru Telescope), Imke de Pater (UC Berkeley), and Heidi Hammel (Association of Universities for Research in Astronomy).

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

“세계는 우리가 생각하는 것보다 더 큰 홍수 위험에 처해 있습니다.” – 전 세계 범람원에 인간이 미치는 영향의 충격적인 정도를 드러냅니다.

새로운 연구는 인간이 유발한 자연 범람원의 변화에 ​​대한 최초의 글로벌 평가를 제공하고…

과학자들은 인체에서 가장 빠른 가속도를 발견했습니다.

마블의 “어벤져스: 인피니티 워”에서 슈퍼 악당 타노스는 손가락 터치로 우주 생명체의 절반을…

최신 뉴스 업데이트: OECD는 136개국이 글로벌 법인세에 관한 거래에 동의했다고 밝혔습니다.

영국 교통부 장관은 영국 정부가 학교의 중간 방학을 앞두고 영국에 도착하는 국제…

Webb 망원경은 마침내 토성의 밝은 고리를 편광시킵니다.

웹 우주 망원경은 고리가 있는 행성 토성의 이미지를 포착하여 우리 태양계의 거대…