빛나는 특별한 식물

분 대학과 미시간 대학의 연구에 따르면 특정 식물이 장기간의 가뭄에서 살아남고 비가 내린 후 회복하는 능력은 단일 “기적의 유전자”가 아니라 광범위한 유전자 네트워크 때문이라는 것이 밝혀졌습니다.

분 대학과 미시간 대학의 과학자들은 가뭄에 강한 식물의 게놈에 대한 포괄적인 분석을 수행했습니다.

특정 식물[{” attribute=””>species possess the ability to endure prolonged periods without water, rejuvenating to their green state after a minor rain shower. A joint study conducted by the Universities of Bonn and Michigan reveals that this unique trait doesn’t stem from a singular “miracle gene.” Instead, this resilience is the result of an interconnected network of genes, most of which can also be found in less resistant plant varieties. The findings of the research were recently published in The Plant Journal.

The investigators thoroughly examined a species extensively studied at the University of Bonn, the resurrection plant known scientifically as Craterostigma plantagineum. Its name appropriately reflects its ability to seemingly return from the dead during periods of drought. Despite seeming lifeless after enduring months of water scarcity, this remarkable plant requires only a small amount of water to spring back to life.

“At our institute, we have been studying how the plant does this for many years,” explains Prof. Dr. Dorothea Bartels from the Institute of Molecular Physiology and Biotechnology of Plants (IMBIO) at the University of Bonn.

Her interests include the genes that are responsible for drought tolerance. It became increasingly clear that this ability is not the result of a single “miracle gene.” Instead, a great many genes are involved, most of which are also found in species that do not cope so well with drought.

The plant has eight copies of each chromosome

In the current study, Bartel’s team, together with researchers from the University of Michigan (USA), analyzed the complete genome of Craterostigma plantagineum. And this is built quite complex: While most animals have two copies of each chromosome – one from the mother, one from the father – Craterostigma has eight. Such an “eightfold” genome is also called an octoploid. We humans, in contrast, are diploid.

“Such a multiplication of genetic information can be observed in many plants that have evolved under extreme conditions,” Bartels says. But why is that? A probable reason: If a gene is present in eight copies instead of two, it can in principle be read four times as fast. An octoploid genome can therefore enable large quantities of a required protein to be produced very quickly. This ability also appears to be important for the development of drought tolerance.

Resurrection Plant Craterostigma plantagineum

The resurrection plant Craterostigma plantagineum in irrigated condition (left), desiccated (center), and then “resurrected” (right). Credit: AG Bartels/University of Bonn

In Craterostigma, some genes associated with greater tolerance to drought are even further replicated. These include the so-called ELIPs – the acronym stands for “early light-inducible proteins”, as they are rapidly switched on by light and protect against oxidative stress. They occur in high copy numbers in all drought-tolerant species. “Craterostigma has close to 200-ELIP genes that are nearly identical and are located in large clusters of ten or twenty copies on different chromosomes,” Bartels explains. Drought-tolerant plants can therefore presumably draw on an extensive network of genes that they can rapidly upregulate in the event of drought.

Drought-sensitive species usually have the same genes – albeit in lower copy numbers. This is also not surprising: The seeds and pollen of most plants are often still able to germinate after long periods without water. So they also have a genetic program to protect against drought. “However, this program is normally switched off at germination and cannot be reactivated afterward,” the botanist explains. “In resurrection plants, in contrast, it remains active.”

Most species “can do” drought tolerance

Drought tolerance, then, is something that the vast majority of plants “can do.” The genes that confer this ability probably emerged very early in the course of evolution. However, these networks are more efficient in drought-tolerant species and, moreover, are not active only at certain stages of the life cycle.

That said, not every cell in Craterostigma plantagineum has the same “drought program” either. This was shown by researchers from the University of Düsseldorf, who were also involved in the study. For instance, different drought network genes are active in roots during desiccation than in leaves. This finding is not unexpected: Leaves, for instance, need to protect themselves against the damaging effects of the sun. They are helped in this by ELIPs, for example. With sufficient moisture, the plant forms photosynthetic pigments that at least partially absorb radiation. This natural protection largely fails during drought. Roots, in contrast, do not have to worry about sunburn.

The study improves understanding of why some species suffer so little from drought. In the long term, it could therefore contribute to the breeding of crops such as wheat or corn that cope better with drought. In times of climate change, these are likely to be in greater demand than ever in the future.

Reference: “Core cellular and tissue-specific mechanisms enable desiccation tolerance in Craterostigma” by Robert VanBuren, Ching Man Wai, Valentino Giarola, Milan Župunski, Jeremy Pardo, Michael Kalinowski, Guido Grossmann and Dorothea Bartels, 27 February 2023, The Plant Journal.
DOI: 10.1111/tpj.16165

In addition to the University of Bonn, Michigan State University (USA) and Heinrich Heine University Düsseldorf were involved in the study. The work was funded by the US National Science Foundation (NSF) and the German Research Foundation (DFG).

READ  신시내티 어린이 병원에서 새로운 무바늘 백신 테스트
답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

유클리드 망원경은 “암흑 우주” 임무의 첫 번째 이미지를 보냅니다. 공간

유클리드 우주 망원경은 “어두운 우주”의 베일을 벗기겠다는 임무를 통해 첫 번째 이미지를…

거대한 진공이 우주를 나누나요?

팽창률에 대한 상충되는 측정을 특징으로 하는 우주론의 최근 “허블 지터”는 표준 우주론…

해군 사령관은 배를 버리는 것을 좋아하지 않지만 스타라이너를 타고 배는 배를 버렸다.

확대 / NASA 우주비행사 부치 윌모어(Butch Wilmore)와 소니 윌리엄스(Sonny Williams)가 6월 5일…

우주비행사를 달에 보내는 데에는 여전히 어려움이 남아 있습니다. NASA, 발사일 또 연기

미국은 인간을 다시 달에 보내기 위한 경쟁에 늦었습니다. NASA는 이번에는 주요 안전…