It took evolution 3 or 4 billion years ago To produce Homo sapiens. If the climate had completely failed only once in that time, evolution would have completely stalled and we wouldn’t be here now. In order to understand how we arose on planet Earth, we will need to know how Earth has managed to survive a decent life span of billions of years.

This is not a trivial problem. Current global warming shows us that the climate can change dramatically over the course of a few centuries. Over geological time scales, it is easier to change the climate.

Calculations show that there is a potential for Earth’s climate to degrade to temperatures below freezing or above boiling point in just a few million years.

We also know that the sun has gotten 30 percent brighter since life first evolved. In theory, this should have caused the oceans to boil now, given that it wasn’t Generally Frozen to the ground early – this is known as “Faint youth of the sun paradoxHowever, somehow, the habitability puzzle has been solved.

Scientists came up with two main theories. The first is that Earth could possess something like a thermostat – a feedback mechanism (or mechanisms) that prevent the climate from roaming into deadly temperatures.

The second is that among a large number of planets, some may have succeeded in passing through luck, and Earth is one of them. This second scenario is made more plausible by the discoveries in recent decades of many planets outside our solar system – the so-called Exoplanets.

READ  과학자들은 플라스틱처럼 만들 수 있지만 금속처럼 만들어진 이상한 물질에 놀랐습니다.

Astronomical observations of distant stars tell us that many of them have planets orbiting around them, and that some of them are of such size, density and orbital distance that temperatures suitable for life are theoretically possible. It has been estimated that there is at least 2 billion of these are candidate planets In our galaxy alone.

Scientists love to travel to these exoplanets to check if any of them match up to a billion years of climate stability on Earth. But even the closest exoplanets are orbiting the star Proxima Centauri, More than four light years away. It is difficult to obtain observational or empirical evidence.

Instead, I discovered the same question through modeling. Using a computer program designed to simulate the evolution of the climate on planets in general (not just Earth), first 100,000 planets were born, Each has a randomly different set of climate reactions. Climatic reactions are processes that can be enlarged or contracted Climate change Think, for example, about melting Arctic sea ice, which replaces sun-reflecting ice with an open sea that absorbs sunlight, which in turn leads to more warming and more melting.

In order to investigate how likely it is that each of these diverse planets will remain habitable on massive (geological) time scales, I simulated every 100 times. Each time the planet started with different initial temperatures and was subjected to a randomly different set of climate events.

These events represent climate change factors such as Super volcano Bangs (eg Mount Pinatubo But much bigger) and asteroid Effects (like the one that killed Dinosaurs). In each round of the 100 cycles, the planet’s temperature was tracked until it became very hot or very cold or survived for 3 billion years, at which point it was seen as a potential melting pot of intelligent life.

READ  지구에 떨어진 거대한 소행성에서 지금까지 본 적 없는 2가지 광물 발견

The simulation results give a definite answer to the housing problem, at least in terms of the importance of feedback and luck. It was so rare (in fact, only once out of 100,000) that a planet had such such strong stability feedback that it remained habitable 100 times, regardless of random weather events.

In fact, most planets that have remained habitable at least once, have done so less than ten times out of 100. On nearly every occasion in a simulation when a planet has been habitable for 3 billion years, luck was partly due to luck.

File 20210119 26 1cdmrfbRandomly generated 1000 different planets and play twice. The green circles show habitability for 3 billion years. (Toby Terrell)

At the same time, luck in itself turned out to be insufficient. Planets specially designed to have absolutely no reflexes, never remained habitable; The random walk, which is prone to weather events, the path never lasted.

This overall score, results partly based on feedback and partly on luck, is strong. All sorts of changes to the modeling did not affect her. By implicitly, the Earth must thus have some reactions to stabilizing the climate but at the same time Good fortune It must also have participated in its remaining habitable.

For example, if an asteroid or solar flare was a little larger than it was, or it happened at a slightly different (more important) time, we probably wouldn’t be here on Earth today.

It gives a different view of why we are able to revisit Earth’s so gorgeous and expansive history that is evolving, diversifying, and becoming more and more complex to the point that it gave rise to us. Conversation

READ  예방 접종을받은 사람들이 마스크를 착용하도록하는 CDC의 새로운 권고는 반발에 직면 해 있습니다.

Toby Terrell, Professor of Earth System Sciences, University of Southampton.

This article was republished from Conversation Under a Creative Commons license. Read the The original article.

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

연구에 따르면 거대 외계행성은 푹신한 솜사탕만큼 밀도가 높다는 사실이 밝혀졌습니다.

케이. 이바노프 WASP-193b라고 불리는 초저밀도 행성은 목성보다 크지만 질량은 아주 작습니다. CNN의…

고고학자들이 네안데르탈인 도끼를 발견한 후 선사시대 코끼리 5마리의 해골을 발굴했습니다.

고고학자들은 코츠월드 들판에서 네안데르탈인 도끼가 발견된 후 “215,000년 전 동굴 거주자들이 먹었던”…

Webb의 망원경은 이제 막 시작되었습니다.

볼티모어 – 지금까지 그것은 하늘에서 보는 눈 사탕이었습니다. 이해할 수 없을 정도로…

한 연구에 따르면 신생아 지구는 자체적으로 물을 만들었습니다.

새로운 연구에 따르면 얼음 혜성이나 소행성이 새로 태어난 건조한 지구에 물을 공급했다는…