Scientists have determined the source of the huge glow that swept our solar system.

The discovery could help us understand gamma-ray bursts, the most powerful in the universe.

Earth experiences both light and short bursts of gamma rays regularly on most days. But massive eruptions rarely happen, like the newly examined GRB 200415A, which brings with it more powerful energy from our sun.

The glow appears to have appeared from an unusually strong neutron star known as a magnetic star, according to scientists in new results published in Natural Astronomy.

“Our sun is a very normal star. When it dies, it will grow up and become a giant red star. Then it will collapse into a small compact star called the white dwarf,” said Swibor Razaki of the University of Johannesburg, who led the research.

“But stars that are much larger than the Sun play a different endgame.”

Instead, such stars explode in a supernova and then leave behind a small, compact star known as a neutron star. It’s small – it can be packed into a 12-mile space – yet so dense that a spoonful weighs tons.

The new search began in April of last year – on the morning of April 15th – when a giant glow swept across Mars. It was picked up by a network of satellites including the International Space Station, which led to the start of the research published today.

When GRB 200415A passed the Earth, it was not the first such explosion to be detected on Earth. But it was unusual in a number of helpful ways, including the fact that it came from much closer to us than usual.

It was also the first giant glow to be captured since the Fermi Gamma-ray Space Telescope launched in 2008. This means that the researchers were able to collect massive amounts of data in 140 milliseconds that lasted, giving them a much better picture than a previous visitor who arrived 16 years ago.

And when the researchers were able to pinpoint the cause, they found it also unusual: It came from a magnetic star. There are only 30 of these known objects in our entire Milky Way galaxy, made up of tens of thousands of neutron stars, and they could be a thousand times magnetic than normal neutron stars.

The galaxy from which the glow came is outside our own Milky Way, but only on a galactic scale. It’s just 11.4 million light-years away.

Because of work in the lead up to the eruption last year, researchers have built a detailed set of predictions about what GRB might look like when it reaches Earth. For example, Professor Razzak predicted 15 years ago that a giant flare would include two explosions, and another closely followed the first, and thus they were able to compare those predictions with their current research.

READ  연구원들은 고래가 기후 위기에 대처하는 데 중요하지만 간과된 역할을 할 수 있다고 말합니다.

Scientists hope to be able to find and research it in more detail. This can help explain not only the processes that allow for such powerful explosions, but also use them as ways to make sense of our universe’s story.

Professor Razzaq said in a statement: “Despite the gamma ray bursts from one star, we can discover them from a very early time in the history of the universe. Even going back to a time when the universe was a few hundred million years old.”

“This is at a very early stage in the evolution of the universe. Stars that died at that time … We are now only discovering gamma-ray bursts because light takes time to travel.

“This means that gamma-ray bursts can tell us more about how the universe has expanded and evolved over time.”

답글 남기기

이메일 주소는 공개되지 않습니다. 필수 필드는 *로 표시됩니다

You May Also Like

태양열 우주선이 포착한 거대한 태양 폭발

거대 분출의 태양 궤도선과 소호의 모습 – 클로즈업. 출처: Solar Orbiter Team…

공기질 모니터가 개학을 위한 최신 액세서리인 이유

필라델피아의 건축가 Lizzie Rothwell은 이번 가을에 아들을 3학년으로 보낼 때 파란색 LL…

Cape에서 Starlink Falcon 9 출시에 대한 실시간 업데이트

오늘 케이프 커내버럴 우주군 기지에서 더블헤더 발사가 이루어졌습니다. 오후 중반 SpaceX Falcon…

수감자에게 백신을 과도하게 투여 한 간호사를 중지하십시오.

두 명의 간호사가 70 명 이상의 수감자들에게 코로나 바이러스 백신을 과다 투여…